Lego Chassis – Stage One – Part Two

Continued work on the Lego chassis to house the motherboard:

Each side requires a different approach due to inconsistencies in the metal base plates shape and structure.

As well as the very much ‘mixed bag’ of Lego pieces we are working with…

I expect the build an access panel or door over these ports eventually…

This side could use some further strengthening from cross pieces…

The chassis is more or less sufficiently complete to move on to other things.

Next will be installing Puppy ‘Wary’ Linux and installing it on my old Dell laptop.


Lego Chassis – Stage One – Part One

Began to build a Lego chassis around the motherboard.

The metal base plate that the motherboard is mounted on provides additional strength to the chassis, but brings its own challenges to the build.

I worked to keep all the various ports and expansion slot panels open and accessible for now, to allow for connections.

This side was pretty straightforward…

But this end was particularly challenging…

The bottom has some cross beams for support, which will be expanded upon to incorporate the primary drive system.

Weirdly enough, I dreamed up an idea for a tri-wheeled system that I may try to assemble for this, if it doesn’t work out I may order some much larger single wheels. We will see…

Hardware Upgrades…

The replacement hardware came today.

Installed a new socket 370 / socket A CPU cooler:

Now the system can run without overheating and freezing / crashing after just a couple minutes.

Also maxed out the RAM to a whooping 256 MB of PC100 RAM:

This allows Puppy ‘Wary’ Linux to boot and run quite well.

Next will be to start building a Lego chassis to house / support this board and allow for easy prototyping of other components.

First New Project In A While…

So, I am finally starting on a new project after such a long time that I dont even remember.

This is going to be my first recent stab at a robot, other than in class with the kids, since my college senior year project. Similar to that, I plan to assemble the body out of Lego bricks but this time going for a bit more powerful computer as the brain then that time (it was a college project board with minimal CPU and RAM).

In this case it will be a Celeron 400Mhz based board I recovered from an old HP Pavilion 4535 mini-tower.

It currently only has the minimum of 64 MB RAM and the CPU fan is mostly dead (will replace it), but I plan to max out the RAM to a hilarious 256 MB RAM and see if it can boot/run from a large memory stick. I already tested booting from a Puppy Linux Live CD and it loads all the way up, though its super slow with so little RAM. I also want to get a DC-DC picoPSU ATX power supply to drive off of batteries, though that is still in the theoretical phase. Here it is rough setup on the work bench with its guts all over:

It has a wired network card and several open PCI slots, so I may be able to add a Wifi card for remote communications.

I dont think it is fast enough to run Mono or .Net Core, so I may actually have a reason to try out Python, Perl, or something else for its ‘mind’…

Updates to follow…


Robotics Class – Lesson 4 – Basic Electricity & Basic Electronics

Robotics Class – Lesson 4 – Basic Electricity & Basic Electronics (Compiled mostly from Wikipedia entries)

– Basic Electricity –

Electricity is the set of physical phenomena associated with the presence and flow of electric charge. Electricity gives a wide variety of well-known effects, such as lightning, static electricity, electromagnetic induction and electric current. In addition, electricity permits the creation and reception of electromagnetic radiation such as radio waves.

In electricity, charges produce electromagnetic fields which act on other charges. Electricity occurs due to several types of physics:

electric charge: a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is influenced by, and produces, electromagnetic fields, electric charges can be positive or negative.
electric field (see electrostatics): charges are surrounded by an electric field. The electric field produces a force on other charges. Changes in the electric field travel at the speed of light.
electric potential: the capacity of an electric field to do work on an electric charge, typically measured in volts.
electric current: a movement or flow of electrically charged particles, typically measured in amperes.
electromagnets: moving charges produce a magnetic field. Electric currents generate magnetic fields, and changing magnetic fields generate electric currents.

Electrical phenomena have been studied since antiquity, though progress in theoretical understanding remained slow until the seventeenth and eighteenth centuries. Even then, practical applications for electricity were few, and it would not be until the late nineteenth century that engineers were able to put it to industrial and residential use. The rapid expansion in electrical technology at this time transformed industry and society. Electricity’s extraordinary versatility means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. Electrical power is now the backbone of modern industrial society.

– Basic Electronics –

Electronics is the science of controlling electrical energy electrically, in which the electrons have a fundamental role. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes, integrated circuits, associated passive electrical components, and interconnection technologies. Commonly, electronic devices contain circuitry consisting primarily or exclusively of active semiconductors supplemented with passive elements; such a circuit is described as an electronic circuit.

Electronics is distinct from electrical and electro-mechanical science and technology, which deal with the generation, distribution, switching, storage, and conversion of electrical energy to and from other energy forms using wires, motors, generators, batteries, switches, relays, transformers, resistors, and other passive components. This distinction started around 1906 with the invention by Lee De Forest of the triode, which made electrical amplification of weak radio signals and audio signals possible with a non-mechanical device. Until 1950 this field was called “radio technology” because its principal application was the design and theory of radio transmitters, receivers, and vacuum tubes.

Today, most electronic devices use semiconductor components to perform electron control. The study of semiconductor devices and related technology is considered a branch of solid-state physics, whereas the design and construction of electronic circuits to solve practical problems come under electronics engineering. This article focuses on engineering aspects of electronics.

– History of electronic components –

Vacuum tubes (Thermionic valves) were among the earliest electronic components. They were almost solely responsible for the electronics revolution of the first half of the Twentieth Century. They took electronics from parlor tricks and gave us radio, television, phonographs, radar, long distance telephony and much more. They played a leading role in the field of microwave and high power transmission as well as television receivers until the middle of the 1980s. Since that time, solid state devices have all but completely taken over. Vacuum tubes are still used in some specialist applications such as high power RF amplifiers, cathode ray tubes, specialist audio equipment, guitar amplifiers and some microwave devices.

In April 1955 the IBM 608 was the first IBM product to use transistor circuits without any vacuum tubes and is believed to be the world’s first all-transistorized calculator to be manufactured for the commercial market.[3][4] The 608 contained more than 3,000 germanium transistors. Thomas J. Watson Jr. ordered all future IBM products to use transistors in their design. From that time on transistors were almost exclusively used for computer logic and peripherals.

– Types of Circuits –

Circuits and components can be divided into two groups: analog and digital. A particular device may consist of circuitry that has one or the other or a mix of the two types.

– Analog Circuits –

Most analog electronic appliances, such as radio receivers, are constructed from combinations of a few types of basic circuits. Analog circuits use a continuous range of voltage or current as opposed to discrete levels as in digital circuits.

The number of different analog circuits so far devised is huge, especially because a ‘circuit’ can be defined as anything from a single component, to systems containing thousands of components.

Analog circuits are sometimes called linear circuits although many non-linear effects are used in analog circuits such as mixers, modulators, etc. Good examples of analog circuits include vacuum tube and transistor amplifiers, operational amplifiers and oscillators.

One rarely finds modern circuits that are entirely analog. These days analog circuitry may use digital or even microprocessor techniques to improve performance. This type of circuit is usually called “mixed signal” rather than analog or digital.

Sometimes it may be difficult to differentiate between analog and digital circuits as they have elements of both linear and non-linear operation. An example is the comparator which takes in a continuous range of voltage but only outputs one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch having essentially two levels of output. In fact, many digital circuits are actually implemented as variations of analog circuits similar to this example—after all, all aspects of the real physical world are essentially analog, so digital effects are only realized by constraining analog behavior.

– Digital Circuits –

We will learn about digital circuits in a future lesson…

– Simple Components –

Discuss the different components we will be using for challenges…

Breadboard, battery holder, momentary push button, LED (light emitting diode), various wire lengths

– Challenges –

Build a simple LED circuit with push button switch and battery.

Build a more complex LED array circuit to display a specific number with push button switch and battery.

Robotics Class Notes – Lesson 4

Robotics Class – Lesson 3 – Simple Machines Part 3 – Wedge and Screw

Robotics Class – Lesson 3 – Simple Machines Part 3 – Wedge and Screw (Compiled mostly from Wikipedia entries)

– Simple Machines –

A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term refers to the six classical simple machines which were defined by Renaissance scientists:

Wheel and axle
Inclined plane

A simple machine uses a single applied force to do work against a single load force. Ignoring friction losses, the work done on the load is equal to the work done by the applied force. The machine can increase the amount of the output force, at the cost of a proportional decrease in the distance moved by the load. The ratio of the output to the applied force is called the mechanical advantage.

– Wedge –

A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width. Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.

Perhaps the first example of a wedge is the hand axe. Wedges have been around for thousands of years, they were first made of simple stone. A hand axe is made by chipping stone, generally flint, to form a bifacial edge, or wedge. A wedge is a simple machine that transforms lateral force and movement of the tool into a transverse splitting force and movement of the workpiece. The available power is limited by the effort of the person using the tool, but because power is the product of force and movement, the wedge amplifies the force by reducing the movement. This amplification, or mechanical advantage is the ratio of the input speed to output speed. For a wedge this is given by 1/tanα, where α is the tip angle. The faces of a wedge are modeled as straight lines to form a sliding or prismatic joint.

The origin of the wedge is not known. In ancient Egyptian quarries, bronze wedges were used to break away blocks of stone used in construction. Wooden wedges that swelled after being saturated with water, were also used. Some indigenous peoples of the Americas used antler wedges for splitting and working wood to make canoes, dwellings and other objects.

The blade is a compound inclined plane, consisting of two inclined planes placed so that the planes meet at one edge. When the edge where the two planes meet is pushed into a solid or fluid substance it overcomes the resistance of materials to separate by transferring the force exerted against the material into two opposing forces normal to the faces of the blade.

The blade’s first known use by humans was the sharp edge of a flint stone that was used to cleave or split animal tissue, e.g. cutting meat. The use of iron or other metals led to the development of knives for those kind of tasks. The blade of the knife allowed humans to cut meat, fibers, and other plant and animal materials with much less force than it would take to tear them apart by simply pulling with their hands. Other examples are plows, which separate soil particles, scissors which separate fabric, axes which separate wood fibers, and chisels and planes which separate wood.

Wedges, saws and chisels can separate thick and hard materials, such as wood, solid stone and hard metals and they do so with much less force, waste of material, and with more precision, than crushing, which is the application of the same force over a wider area of the material to be separated.

Other examples of wedges are found in drill bits, which produce circular holes in solids. The two edges of a drill bit are sharpened, at opposing angles, into a point and that edge is wound around the shaft of the drill bit. When the drill bit spins on its axis of rotation, the wedges are forced into the material to be separated. The resulting cut in the material is in the direction of rotation of the drill bit while the helical shape of a bit allows the removal of the cut material.

Wedges can also be used to hold objects in place, such as engine parts (poppet valves), bicycle parts (stems and eccentric bottom brackets), and doors. A wedge-type door stop (door wedge) functions largely because of the friction generated between the bottom of the door and the wedge, and the wedge and the floor (or other surface).

– Screw –

A screw is a mechanism that converts rotational motion to linear motion, and a torque (rotational force) to a linear force. The most common form consists of a cylindrical shaft with helical grooves or ridges called threads around the outside. The screw passes through a hole in another object or medium, with threads on the inside of the hole that mesh with the screw’s threads. When the shaft of the screw is rotated relative to the stationary threads, the screw moves along its axis relative to the medium surrounding it; for example rotating a wood screw forces it into wood. In screw mechanisms, either the screw shaft can rotate through a threaded hole in a stationary object, or a threaded collar such as a nut can rotate around a stationary screw shaft. Geometrically, a screw can be viewed as a narrow inclined plane wrapped around a cylinder.

Like the other simple machines a screw can amplify force; a small rotational force (torque) on the shaft can exert a large axial force on a load. The smaller the pitch, the distance between the screw’s threads, the greater the mechanical advantage, the ratio of output to input force. Screws are widely used in threaded fasteners to hold objects together, and in devices such as screw tops for containers, vises, screw jacks and screw presses.

Other mechanisms that use the same principle, also called screws, don’t necessarily have a shaft or threads. For example, a corkscrew is a helix-shaped rod with a sharp point, and an Archimedes’ screw is a water pump that uses a rotating helical chamber to move water uphill. The common principle of all screws is that a rotating helix can cause linear motion.

Lead and Pitch –

The fineness or coarseness of a screw’s threads are defined by two closely related quantities:
— The lead is defined as the axial distance (parallel to the screw’s axis) the screw travels in one complete revolution (360°) of the
shaft. The lead determines the mechanical advantage of the screw; the smaller the lead, the higher the mechanical advantage.
— The pitch is defined as the axial distance between the crests of adjacent threads.

In most screws, called “single start” screws, which have a single helical thread wrapped around them, the lead and pitch are equal. They only differ in “multiple start” screws, which have several intertwined threads. In these screws the lead is equal to the pitch multiplied by the number of starts. Multiple-start screws are used when a large linear motion for a given rotation is desired, for example in screw caps on bottles, and ball point pens.
Handedness –

The helix of a screw’s thread can twist in two possible directions, which is known as handedness. Most screw threads are oriented so that when seen from above, the screw shaft moves away from the viewer (the screw is tightened) when turned in a clockwise direction. This is known as a right-handed (RH) thread, because it follows the right hand grip rule: when the fingers of the right hand are curled around the shaft in the direction of rotation, the thumb will point in the direction of motion of the shaft. Threads oriented in the opposite direction are known as left-handed (LH).

By common convention, right-handedness is the default handedness for screw threads. Therefore, most threaded parts and fasteners have right-handed threads. One explanation for why right-handed threads became standard is that for a right-handed person, tightening a right-handed screw with a screwdriver is easier than tightening a left-handed screw, because it uses the stronger supinator muscle of the arm rather than the weaker pronator muscle. Since most people are right-handed, right-handed threads became standard on threaded fasteners. Left-handed screw threads are used in some machines and in these applications:

– Where the rotation of a shaft would cause a conventional right-handed nut to loosen rather than to tighten due to fretting induced precession. Examples include:
The left hand pedal on a bicycle.
The left-hand screw holding a circular saw blade or a bench grinder wheel on.
– In some devices that have threads on either end, like turnbuckles and removable pipe segments. These parts have one right-handed and
one left-handed thread, so that turning the piece tightens or loosens both threads at the same time.
– In some gas supply connections to prevent dangerous misconnections. For example in gas welding the flammable gas supply line is attached with left-handed threads, so it will not be accidentally switched with the oxygen supply, which uses right-handed threads.
– To make them useless to the public (thus discouraging theft), left-handed light bulbs are used in some railway and subway stations.
– Coffin lids are said to have been traditionally held on with left-handed screws.

Different shapes (profiles) of threads are used in screws employed for different purposes. Screw threads are standardized so that parts made by different manufacturers will mate correctly.

Types of threads –

In threaded fasteners, large amounts of friction are acceptable and usually wanted, to prevent the fastener from unscrewing. So threads used in fasteners usually have a large 60° thread angle:

(a) V thread – These are used where additional friction is needed to make sure the screw remains motionless, such as in setscrews and adjustment screws, and where the joint must be fluid tight as in threaded pipe joints.
(b) American National – This has been replaced by the almost identical Unified Thread Standard. It has the same 60° thread angle as the V thread but is stronger because of the flat root. Used in bolts, nuts, and a wide variety of fasteners.
(c) Whitworth or British Standard – Very similar British standard replaced by the Unified Thread Standard.

In machine linkages such as lead screws or jackscrews, in contrast, friction must be minimized. Therefore threads with smaller angles are used:

(d) Square thread – This is the strongest and lowest friction thread, with a 0° thread angle, and doesn’t apply bursting force to the nut. However it is difficult to fabricate, requiring a single point cutting tool due to the need to undercut the edges. It is used in high-load applications such as jackscrews and lead screws but has been mostly replaced by the Acme thread. A modified square thread with a small 5° thread angle is sometimes used instead, which is cheaper to manufacture.
(e) Acme thread – With its 30° thread angle this has higher friction than the square thread, but is easier to manufacture and can be used with a split nut to adjust for wear. It is widely used in vises, C-clamps, valves, scissor jacks and lead screws in machines like lathes.
(f) Buttress thread – This is used in high-load applications in which the load force is applied in only one direction, such as screw jacks. With a 0° angle of the bearing surface it is as efficient as the square thread but stronger and easier to manufacture.
(g) Knuckle thread – Similar to a square thread in which the corners have been rounded to protect them from damage, also giving it higher friction. In low-strength applications it can be manufactured cheaply from sheet stock by rolling. It is used in light bulbs and sockets.

Uses –

A screw conveyor uses a rotating helical screw blade to move bulk materials.

Because of its self-locking property (see below) the screw is widely used in threaded fasteners to hold objects or materials together: the wood screw, sheet metal screw, stud, and bolt and nut.

The self-locking property is also key to the screw’s use in a wide range of other applications, such as the corkscrew, screw top container lid, threaded pipe joint, vise, C-clamp, and screw jack.

Screws are also used as linkages in machines to transfer power, in the worm gear, lead screw, ball screw, and roller screw. Due to their low efficiency, screw linkages are seldom used to carry high power, but are more often employed in low power, intermittent uses such as positioning actuators.

Rotating helical screw blades or chambers are used to move material in the Archimedes’ screw, auger earth drill, and screw conveyor.

The micrometer uses a precision calibrated screw for measuring lengths with great accuracy.


Robotics Class Notes – Lesson 3


Robotics Class – Lesson 2 – Simple Machines Part 2 – Pulley and Inclined Plane

Robotics Class – Lesson 2 – Simple Machines Part 2 – Pulley and Inclined Plane (Compiled mostly from Wikipedia entries)

– Simple Machines –

A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term refers to the six classical simple machines which were defined by Renaissance scientists:

Wheel and axle
Inclined plane

A simple machine uses a single applied force to do work against a single load force. Ignoring friction losses, the work done on the load is equal to the work done by the applied force. The machine can increase the amount of the output force, at the cost of a proportional decrease in the distance moved by the load. The ratio of the output to the applied force is called the mechanical advantage.

– Pulley –

A pulley is a wheel on an axle or shaft that is designed to support movement and change of direction of a taut cable or belt along its circumference. Pulleys are used in a variety of ways to lift loads, apply forces, and to transmit power. In nautical contexts, the assembly of wheel, axle, and supporting shell is referred to as a “block.”

A pulley may also be called a sheave or drum and may have a groove or grooves between two flanges around its circumference. The drive element of a pulley system can be a rope, cable, belt, or chain that runs over the pulley inside the groove or grooves.

A set of pulleys assembled so that they rotate independently on the same axle form a block. Two blocks with a rope attached to one of the blocks and threaded through the two sets of pulleys form a block and tackle.

A block and tackle is assembled so one block is attached to fixed mounting point and the other is attached to the moving load. The ideal mechanical advantage of the block and tackle is equal to the number of parts of the rope that support the moving block.

These are different types of pulley systems:

Fixed: A fixed pulley has an axle mounted in bearings attached to a supporting structure. A fixed pulley changes the direction of the force on a rope or belt that moves along its circumference. Mechanical advantage is gained by combining a fixed pulley with a movable pulley or another fixed pulley of a different diameter.

Movable: A movable pulley has an axle in a movable block. A single movable pulley is supported by two parts of the same rope and has a mechanical advantage of two.

Compound: A combination of fixed and a movable pulleys forms a block and tackle. A block and tackle can have several pulleys mounted on the fixed and moving axles, further increasing the mechanical advantage.

– Inclined Plane –

An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are widely used to move heavy loads over vertical obstacles; examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.

Moving an object up an inclined plane requires less force than lifting it straight up, at a cost of an increase in the distance moved. The mechanical advantage of an inclined plane, the factor by which the force is reduced, is equal to the ratio of the length of the sloped surface to the height it spans. Due to conservation of energy, the same amount of mechanical energy (work) is required to lift a given object by a given vertical distance, disregarding losses from friction, but the inclined plane allows the same work to be done with a smaller force exerted over a greater distance.

The angle of friction, also sometimes called the angle of repose, is the maximum angle at which a load can rest motionless on an inclined plane due to friction, without sliding down. This angle is equal to the arctangent of the coefficient of static friction μs between the surfaces.

Two other simple machines are often considered to be derived from the inclined plane. The wedge can be considered a moving inclined plane or two inclined planes connected at the base. The screw consists of a narrow inclined plane wrapped around a cylinder.


Inclined planes are widely used in the form of loading ramps to load and unload goods on trucks, ships, and planes. Wheelchair ramps are used to allow people in wheelchairs to get over vertical obstacles without exceeding their strength. Escalators and slanted conveyor belts are also forms of inclined plane. In a funicular or cable railway a railroad car is pulled up a steep inclined plane using cables. Inclined planes also allow heavy fragile objects, including humans, to be safely lowered down a vertical distance by using the normal force of the plane to reduce the gravitational force. Aircraft evacuation slides allow people to rapidly and safely reach the ground from the height of a passenger airliner.


Lego Models:

Combined Pulley System:

Worm Gear:


Robotics Class Notes – Lesson 2

Robotics Class – Lesson 1 – Simple Machines Part 1 – Lever and Wheel & Axle

Robotics Class – Lesson 1 – Simple Machines Part 1 – Lever and Wheel & Axle (Compiled mostly from Wikipedia entries)

– Simple Machines –

A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term refers to the six classical simple machines which were defined by Renaissance scientists:

Wheel and axle
Inclined plane

A simple machine uses a single applied force to do work against a single load force. Ignoring friction losses, the work done on the load is equal to the work done by the applied force. The machine can increase the amount of the output force, at the cost of a proportional decrease in the distance moved by the load. The ratio of the output to the applied force is called the mechanical advantage.

Simple machines can be regarded as the elementary “building blocks” of which all more complicated machines (sometimes called “compound machines”) are composed. For example, wheels, levers, and pulleys are all used in the mechanism of a bicycle. The mechanical advantage of a compound machine is just the product of the mechanical advantages of the simple machines of which it is composed.

– Lever –

A lever is a machine consisting of a beam or rigid rod pivoted at a fixed hinge, or fulcrum. A lever is a rigid body capable of rotating on a point on itself. On the basis of the location of fulcrum, load and effort, the lever is divided into three types. It is one of the six simple machines identified by Renaissance scientists. A lever amplifies an input force to provide a greater output force, which is said to provide leverage. The ratio of the output force to the input force is the mechanical advantage of the lever.

Levers are classified by the relative positions of the fulcrum, effort and resistance (or load). It is common to call the input force the effort and the output force the load or the resistance. This allows the identification of three classes of levers by the relative locations of the fulcrum, the resistance and the effort:

Class 1: Fulcrum in the middle: the effort is applied on one side of the fulcrum and the resistance (or load) on the other side, for example, a seesaw, a crowbar or a pair of scissors. Mechanical advantage may be greater than, less than, or equal to 1.

Class 2: Resistance (or load) in the middle: the effort is applied on one side of the resistance and the fulcrum is located on the other side, for example, a wheelbarrow, a nutcracker, a bottle opener or the brake pedal of a car. Mechanical advantage is always greater than 1.

Class 3: Effort in the middle: the resistance (or load) is on one side of the effort and the fulcrum is located on the other side, for example, a pair of tweezers or the human mandible. Mechanical advantage is always less than 1.
These cases are described by the mnemonic fre 123 where the fulcrum is in the middle for the 1st class lever, the resistance is in the middle for the 2nd class lever, and the effort is in the middle for the 3rd class lever.

– Wheel and Axle –

The wheel and axle is one of six simple machines. The wheel and axle consists of a wheel attached to a smaller axle so that these two parts rotate together in which a force is transferred from one to the other. A hinge or bearing supports the axle, allowing rotation. It can amplify force; a small force applied to the periphery of the large wheel can move a larger load attached to the axle.

The wheel and axle can be viewed as a version of the lever, with a drive force applied tangentially to the perimeter of the wheel and a load force applied to the axle, respectively, that are balanced around the hinge which is the fulcrum. The mechanical advantage of the wheel and axle is the ratio of the distances from the fulcrum to the applied loads, or what is the same thing the ratio of the diameter of the wheel and axle. A major application is in wheeled vehicles, in which the wheel and axle are used to reduce friction of the moving vehicle with the ground. Other examples of devices which use the wheel and axle are capstans, belt drives and gears.

The simple machine called a wheel and axle refers to the assembly formed by two disks, or cylinders, of different diameters mounted so they rotate together around the same axis.The thin rod which needs to be turned is called the axle and the wider object fixed to the axle, on which we apply force is called the wheel. A tangential force applied to the periphery of the large disk can exert a larger force on a load attached to the axle, achieving mechanical advantage. When used as the wheel of a wheeled vehicle the smaller cylinder is the axle of the wheel, but when used in a windlass, winch, and other similar applications (see medieval mining lift to right) the smaller cylinder may be separate from the axle mounted in the bearings. It cannot be used separately.


– Lego Models –


Wheel & Axle:



Robotics Class Notes – Lesson 1